Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.274
1.
Plant Signal Behav ; 19(1): 2350869, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38722963

Fungal pathogens deliver effector proteins into living plant cells to suppress plant immunity and control plant processes that are needed for infection. During plant infection, the devastating rice blast fungus, Magnaporthe oryzae, forms the specialized biotrophic interfacial complex (BIC), which is essential for effector translocation. Cytoplasmic effectors are first focally secreted into BICs, and subsequently packaged into dynamic membranous effector compartments (MECs), then translocated via clathrin-mediated endocytosis (CME) into the host cytoplasm. This study demonstrates that clathrin-heavy chain inhibitors endosidin-9 (ES9) and endosidin-9-17 (ES9-17) blocked the internalization of the fluorescently labeled effectors Bas1 and Pwl2 in rice cells, leading to swollen BICs lacking MECs. In contrast, ES9-17 treatment had no impact on the localization pattern of the apoplastic effector Bas4. This study provides further evidence that cytoplasmic effector translocation occurs by CME in BICs, suggesting a potential role for M. oryzae effectors in co-opting plant endocytosis.


Endocytosis , Oryza , Oryza/microbiology , Oryza/metabolism , Plant Diseases/microbiology , Ascomycota , Host-Pathogen Interactions , Protein Transport , Fungal Proteins/metabolism , Clathrin/metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731885

Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.


Genome-Wide Association Study , Lysine , Oryza , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Oryza/genetics , Oryza/metabolism , Lysine/metabolism , Genome-Wide Association Study/methods , Phenotype , Gene-Environment Interaction , Edible Grain/genetics , Edible Grain/metabolism
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731985

The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.


Oryza , Proanthocyanidins , Ultraviolet Rays , Proanthocyanidins/metabolism , Oryza/radiation effects , Oryza/metabolism , Oryza/growth & development , Seeds/radiation effects , Seeds/metabolism , Edible Grain/radiation effects , Edible Grain/metabolism , Phenotype
4.
BMC Plant Biol ; 24(1): 402, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745317

Rice metabolomics is widely used for biomarker research in the fields of pharmacology. As a consequence, characterization of the variations of the pigmented and non-pigmented traditional rice varieties of Tamil Nadu is crucial. These varieties possess fatty acids, sugars, terpenoids, plant sterols, phenols, carotenoids and other compounds that plays a major role in achieving sustainable development goal 2 (SDG 2). Gas-chromatography coupled with mass spectrometry was used to profile complete untargeted metabolomics of Kullkar (red colour) and Milagu Samba (white colour) for the first time and a total of 168 metabolites were identified. The metabolite profiles were subjected to data mining processes, including principal component analysis (PCA), Orthogonal Partial Least Square Discrimination Analysis (OPLS-DA) and Heat map analysis. OPLS-DA identified 144 differential metabolites between the 2 rice groups, variable importance in projection (VIP) ≥ 1 and fold change (FC) ≥ 2 or FC ≤ 0.5. Volcano plot (64 down regulated, 80 up regulated) was used to illustrate the differential metabolites. OPLS-DA predictive model showed good fit (R2X = 0.687) and predictability (Q2 = 0.977). The pathway enrichment analysis revealed the presence of three distinct pathways that were enriched. These findings serve as a foundation for further investigation into the function and nutritional significance of both pigmented and non-pigmented rice grains thereby can achieve the SDG 2.


Metabolomics , Oryza , Oryza/metabolism , Oryza/chemistry , India , Pigmentation , Metabolome , Gas Chromatography-Mass Spectrometry , Principal Component Analysis
5.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Article En | MEDLINE | ID: mdl-38729111

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Fungal Proteins , Oryza , Plant Diseases , Phosphorylation , Oryza/microbiology , Oryza/metabolism , Plant Diseases/microbiology , Fungal Proteins/metabolism , Phosphoproteins/metabolism , Ascomycota/metabolism , Mitogen-Activated Protein Kinases/metabolism , Proteomics , Signal Transduction
6.
J Agric Food Chem ; 72(19): 10842-10852, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708761

Guvermectin, as a novel nucleoside-like biopesticide, could increase the rice yield excellently, but the potential environmental behaviors remain unclear, which pose potential health risks. Therefore, the uptake and biotransformation of guvermectin in three types of crops (rice, lettuce, and carrot) were first evaluated with a hydroponic system. Guvermectin could be rapidly absorbed and reached equilibrium in roots (12-36 h) and shoots (24-60 h) in three plants, and guvermectin was also vulnerable to dissipation in roots (t1/2 1.02-3.65 h) and shoots (t1/2 9.30-17.91 h). In addition, 8 phase I and 2 phase II metabolites, transformed from guvermectin degradation in vivo and in vitro exposure, were identified, and one was confirmed as psicofuranine, which had antibacterial and antitumor properties; other metabolites were nucleoside-like chemicals. Molecular simulation and quantitative polymerase chain reaction further demonstrated that guvermectin was metabolized by the catabolism pathway of an endogenous nucleotide. Guvermectin had similar metabolites in three plants, but the biotransformation ability had a strong species dependence. In addition, all the metabolites exhibit neglectable toxicities (bioconcentration factor <2000 L/kg b.w., LC50,rat > 5000 mg/kg b.w.) by prediction. The study provided valuable evidence for the application of guvermectin and a better understanding of the biological behavior of nucleoside-like pesticides.


Biotransformation , Daucus carota , Ivermectin , Lactuca , Oryza , Plant Roots , Ivermectin/metabolism , Ivermectin/analogs & derivatives , Plant Roots/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Lactuca/metabolism , Lactuca/chemistry , Lactuca/growth & development , Oryza/metabolism , Oryza/growth & development , Oryza/chemistry , Daucus carota/metabolism , Daucus carota/chemistry , Crops, Agricultural/metabolism , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development
7.
PeerJ ; 12: e17255, 2024.
Article En | MEDLINE | ID: mdl-38708347

Studies on Oryza sativa (rice) are crucial for improving agricultural productivity and ensuring global sustenance security, especially considering the increasing drought and heat stress caused by extreme climate change. Currently, the genes and mechanisms underlying drought and heat resistance in rice are not fully understood, and the scope for enhancing the development of new strains remains considerable. To accurately identify the key genes related to drought and heat stress responses in rice, multiple datasets from the Gene Expression Omnibus (GEO) database were integrated in this study. A co-expression network was constructed using a Weighted Correlation Network Analysis (WGCNA) algorithm. We further distinguished the core network and intersected it with differentially expressed genes and multiple expression datasets for screening. Differences in gene expression levels were verified using quantitative real-time polymerase chain reaction (PCR). OsDjC53, MBF1C, BAG6, HSP23.2, and HSP21.9 were found to be associated with the heat stress response, and it is also possible that UGT83A1 and OsCPn60a1, although not directly related, are affected by drought stress. This study offers significant insights into the molecular mechanisms underlying stress responses in rice, which could promote the development of stress-tolerant rice breeds.


Droughts , Gene Expression Regulation, Plant , Heat-Shock Response , Oryza , Oryza/genetics , Oryza/metabolism , Heat-Shock Response/genetics , Gene Regulatory Networks/genetics , Gene Expression Profiling/methods , Real-Time Polymerase Chain Reaction , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant
8.
Planta ; 259(6): 148, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717679

MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.


Gene Expression Regulation, Plant , Mutation , Nitrogen , Oryza , Plant Proteins , Plant Roots , Transcription Factors , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oryza/drug effects , Nitrogen/metabolism , Nitrogen/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Regulation, Plant/drug effects , Meristem/genetics , Meristem/growth & development , Meristem/drug effects
9.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698342

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Cadmium , Oryza , Plant Proteins , Proteomics , Seedlings , Selenium , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Selenium/pharmacology , Cadmium/toxicity , Seedlings/genetics , Seedlings/drug effects , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Gene Expression Profiling , Transcriptome , Genes, Plant
10.
Planta ; 259(6): 141, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695915

MAIN CONCLUSION: This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.


Arsenic , Oryza , Phloem , Oryza/metabolism , Oryza/growth & development , Oryza/genetics , Phloem/metabolism , Arsenic/metabolism , Biological Transport , Edible Grain/metabolism , Edible Grain/growth & development
11.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739785

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Meiosis , RNA, Plant , Zea mays , Zea mays/genetics , Zea mays/metabolism , Meiosis/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcriptome , Oryza/genetics , Oryza/metabolism
12.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731556

Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on the skincare advantages derived from fermenting red rice with Aspergillus oryzae remain sparse. This study utilized red rice as a substrate for fermentation by Aspergillus oryzae, producing a substance known as red rice Aspergillus oryzae fermentation (RRFA). We conducted a preliminary analysis of RRFA's composition followed by an evaluation of its skincare potential through various in vitro tests. Our objective was to develop a safe and highly effective skincare component for potential cosmetic applications. RRFA's constituents were assessed using high-performance liquid chromatography (HPLC), Kjeldahl nitrogen determination, the phenol-sulfuric acid method, and enzyme-linked immunosorbent assay (ELISA). We employed human dermal fibroblasts (FB) to assess RRFA's anti-aging and antioxidative properties, immortalized keratinocytes (HaCaT cells) and 3D epidermal models to examine its moisturizing and reparative capabilities, and human primary melanocytes (MCs) to study its effects on skin lightening. Our findings revealed that RRFA encompasses several bioactive compounds beneficial for skin health. RRFA can significantly promote the proliferation of FB cells. And it markedly enhances the mRNA expression of ECM-related anti-aging genes and reduces reactive oxygen species production. Furthermore, RRFA significantly boosts the expression of Aquaporin 3 (AQP3), Filaggrin (FLG), and Hyaluronan Synthase 1 (HAS1) mRNA, alongside elevating moisture levels in a 3D epidermal model. Increases were also observed in the mRNA expression of Claudin 1 (CLDN1), Involucrin (IVL), and Zonula Occludens-1 (ZO-1) in keratinocytes. Additionally, RRFA demonstrated an inhibitory effect on melanin synthesis. Collectively, RRFA contains diverse ingredients which are beneficial for skin health and showcases multifaceted skincare effects in terms of anti-aging, antioxidant, moisturizing, repairing, and whitening capabilities in vitro, highlighting its potential for future cosmetic applications.


Aspergillus oryzae , Fermentation , Filaggrin Proteins , Oryza , Aspergillus oryzae/metabolism , Oryza/chemistry , Oryza/metabolism , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Keratinocytes/metabolism , Keratinocytes/drug effects , HaCaT Cells , Fibroblasts/metabolism , Fibroblasts/drug effects , Melanocytes/metabolism , Melanocytes/drug effects , Skin Care/methods , Skin/metabolism
13.
J Hazard Mater ; 471: 134325, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38643573

Arsenic (As) contamination in rice poses a significant threat to human health due to its toxicity and widespread consumption. Identifying and manipulating key genes governing As accumulation in rice is crucial for reducing this threat. The large NIP gene family of aquaporins in rice presents a promising target due to functional redundancy, potentially allowing for gene manipulation without compromising plant growth. This study aimed to utilize genome editing to generate knock-out (KO) lines of genes of NIP family (OsLsi1, OsNIP3;1) and an anion transporter family (OsLsi2), in order to assess their impact on As accumulation and stress tolerance in rice. KO lines were created using CRISPR/Cas9 technology, and the As accumulation patterns, physiological performance, and grain yield were compared against wild-type (WT) under As-treated conditions. KO lines exhibited significantly reduced As accumulation in grain compared to WT. Notably, Osnip3;1 KO line displayed reduced As in xylem sap (71-74%) and grain (32-46%) upon treatment. Additionally, these lines demonstrated improved silicon (23%) uptake, photosynthetic pigment concentrations (Chl a: 77%; Chl b: 79%, Total Chl: 79% & Carotenoid: 49%) overall physiological and agronomical performance under As stress compared to WT. This study successfully utilized genome editing for the first time to identify OsNIP3;1 as a potential target for manipulating As accumulation in rice without compromising grain yield or plant vigor.


Arsenic , CRISPR-Cas Systems , Gene Editing , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Arsenic/metabolism , Arsenic/toxicity , Plant Proteins/genetics , Plant Proteins/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Gene Knockout Techniques , Silicon/metabolism , Plants, Genetically Modified/genetics , Chlorophyll/metabolism
14.
J Hazard Mater ; 471: 134398, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38677124

Livestock manure is often contaminated with heavy metals (HMs) and HM resistance genes (HMRGs), which pollute the environment. In this study, we aimed to investigate the effects of the aqueous phase (AP) produced by hydrothermal carbonization (HTC) of sewage sludge (SS) alone and the AP produced by co-HTC of rice husk (RH) and SS (RH-SS) on humification, HM bioavailability, and HMRGs during chicken manure composting. RH-SS and SS increased the humic acid content of the compost products by 18.3 % and 9.7 %, respectively, and significantly increased the humification index (P < 0.05) compared to the CK (addition of tap water). The passivation of HMs (Zn, Cu, As, Pb, and Cr) increased by 12.17-23.36 % and 9.74-15.95 % for RH-SS and SS, respectively, compared with that for CK. RH-SS and SS reduced the HMRG abundance in composted products by 22.29 % and 15.07 %, respectively. The partial least squares path modeling results showed that SS and RH-SS promoted compost humification while simultaneously altering the bacterial community and reducing the bioavailability of metals and host abundance of HMRGs, which has a direct inhibitory effect on the production and distribution of HMRGs. These findings support a new strategy to reduce the environmental risk of HMs and HMRGs in livestock manure utilization.


Chickens , Composting , Manure , Metals, Heavy , Sewage , Animals , Metals, Heavy/toxicity , Humic Substances/analysis , Carbon/chemistry , Soil Pollutants/toxicity , Oryza/metabolism
15.
Plant Physiol Biochem ; 210: 108605, 2024 May.
Article En | MEDLINE | ID: mdl-38593487

Under a changing climate, nanotechnological interventions for climate resilience in crops are critical to maintaining food security. Prior research has documented the affirmative response of nano zinc sulfide (nZnS) on physiological traits of fungal-infested rice seeds. Here, we propose an application of trigolic formulated zinc sulfide nanoparticles (ZnS-T NPs) on rice seeds as nanobiostimulant to improve physiological parameters by triggering antioxidative defense system, whose mechanism was investigated at transcriptional level by differential expression of genes in germinated seedlings. Nanopriming of healthy rice seeds with ZnS-T NPs (50 µg/ml), considerably intensified the seed vitality factors, including germination percentage, seedling length, dry weight and overall vigor index. Differential activation of antioxidant enzymes, viz. SOD (35.47%), APX (33.80%) and CAT (45.94%), in ZnS-T NPs treated seedlings reduced the probability of redox imbalance and promoted the vitality of rice seedlings. In gene expression profiling by reverse transcription quantitative real time PCR (qRT-PCR), the notable up-regulation of target antioxidant genes (CuZn SOD, APX and CAT) and plant growth specific genes (CKX and GRF) in ZnS-T NPs treated rice seedlings substantiates their molecular role in stimulating both antioxidant defenses and plant growth mechanisms. The improved physiological quality parameters of ZnS-T NPs treated rice seeds under pot house conditions corresponded well with in vitro findings, which validated the beneficial boosted impact of ZnS-T NPs on rice seed development. Inclusively, the study on ZnS-T NPs offers fresh perspectives into biochemical and molecular reactions of rice, potentially positioning them as nanobiostimulant capable of eliciting broad-spectrum immune and growth-enhancing responses.


Antioxidants , Nanoparticles , Oryza , Seeds , Sulfides , Zinc Compounds , Oryza/drug effects , Oryza/growth & development , Oryza/metabolism , Oryza/genetics , Antioxidants/metabolism , Seeds/drug effects , Seeds/growth & development , Sulfides/pharmacology , Zinc Compounds/pharmacology , Nanoparticles/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Metal Nanoparticles/chemistry
16.
Plant Physiol Biochem ; 210: 108608, 2024 May.
Article En | MEDLINE | ID: mdl-38615445

Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.


Arsenic , Arsenites , Oryza , Plant Proteins , Plant Roots , Plant Shoots , Plants, Genetically Modified , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Arsenic/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Gene Expression Regulation, Plant/drug effects , Biological Transport/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics
17.
Sci Total Environ ; 929: 172331, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38608879

The iron oxyhydroxides of iron plaque on the surface of rice root are crucial for the uptake of nutrition elements, especially phosphorus (P), but the effects of iron oxyhydroxides of iron plaque on the accumulation and uptake of P remain largely unknown. In this study, we investigated the regulatory mechanism of iron plaque on P uptake in rice via hydroponics of whole plant and simulation of iron oxyhydroxides-coated suspension cells in rice. The hydroponic experiment results showed that the presence of iron plaque increased the P content in rice shoots. The simulation experiment results further confirmed that after iron plaque coating, the P contents in the whole cell and on the cell wall were significantly increased from 5.16 mg/g and 2.73 mg/g to 8.85 mg/g and 5.27 mg/g, respectively. In addition, our data also showed that iron plaque coating led to an increase in cell surface potentials from -380 ± 40 mV to -200 ± 30 mV, thus promoting the adsorption of more P. Taken together, this study demonstrated that the iron plaque coating increased the surface potential of the cells, thus enhancing cellular P enrichment, eventually promoting P efficient adsorption in rice. Deciphering these regulatory mechanisms provide an insight into P biogeochemical cycling at the soil-plant interface and offer theoretical basis and practical references for the improvement of P bioavailability in rice production.


Iron , Oryza , Phosphorus , Plant Roots , Oryza/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Iron/metabolism , Hydroponics
18.
Nat Commun ; 15(1): 3437, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653755

Phytoalexin sakuranetin functions in resistance against rice blast. However, the mechanisms underlying the effects of sakuranetin remains elusive. Here, we report that rice lines expressing resistance (R) genes were found to contain high levels of sakuranetin, which correlates with attenuated endocytic trafficking of plasma membrane (PM) proteins. Exogenous and endogenous sakuranetin attenuates the endocytosis of various PM proteins and the fungal effector PWL2. Moreover, accumulation of the avirulence protein AvrCO39, resulting from uptake into rice cells by Magnaporthe oryzae, was reduced following treatment with sakuranetin. Pharmacological manipulation of clathrin-mediated endocytic (CME) suggests that this pathway is targeted by sakuranetin. Indeed, attenuation of CME by sakuranetin is sufficient to convey resistance against rice blast. Our data reveals a mechanism of rice against M. oryzae by increasing sakuranetin levels and repressing the CME of pathogen effectors, which is distinct from the action of many R genes that mainly function by modulating transcription.


Ascomycota , Disease Resistance , Endocytosis , Flavonoids , Oryza , Phytoalexins , Plant Diseases , Plant Proteins , Oryza/microbiology , Oryza/metabolism , Oryza/drug effects , Oryza/genetics , Plant Diseases/microbiology , Endocytosis/drug effects , Disease Resistance/genetics , Disease Resistance/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism , Gene Expression Regulation, Plant/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Plants, Genetically Modified , Fungal Proteins/metabolism , Fungal Proteins/genetics
19.
Sci Total Environ ; 927: 172179, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38582103

While over-fertilization and nitrogen deposition can lead to the enrichment of nitrogen in soil, its effects on heavy metal fractions under gradient moisture conditions remains unclear. Here, the effect of intensive ammonium (NH4+) addition on the conversion and interaction of cadmium (Cd), iron (Fe) and carbon (C) was studied. At relatively low (30-80 %) water hold capacity (WHC) NH4+ application increased the carbonate bound Cd fraction (F2Cd), while at relatively high (80-100 %) WHC NH4+ application increased the organic matter bound Cd fraction (F4Cd). Iron­manganese oxide bound Cd fractions (F3Cd) and oxalate-Fe decreased, but DCB-Fe increased in NH4+ treatments, indicating that amorphous Fe was the main carrier of F3Cd. The variations in F1Cd and F4Cd observed under the 100-30-100 % WHC treatment were similar to those observed under low moisture conditions (30-60 % WHC). The C=O/C-H ratio of organic matter in soil decreased under the 30-60 % WHC treatment, but increased under the 80-100 % WHC treatment, which was the dominant factor influencing F4Cd changes. The conversion of NH4+ declined with increasing soil moisture content, and the impact on oxalate-Fe was greater at 30-60 % WHC than at 80-100 % WHC. Correspondingly, genetic analysis showed the effect of NH4+ on Fe and C metabolism at 30-60 % WHC was greater than at 80-100 % WHC. Specifically, NH4+ treatment enhanced the expression of genes encoding extracellular Fe complexation (siderophore) at 30-80 % WHC, while inhibiting genes encoding Fe transmembrane transport at 30-60 % WHC, indicating that siderophores simultaneously facilitated Cd detoxification and Fe complexation. Furthermore, biosynthesis of sesquiterpenoid, steroid, butirosin and neomycin was significantly correlated with F4Cd, while glycosaminoglycan degradation metabolism and assimilatory nitrate reduction was significantly correlated with F2Cd. Overall, this study gives a more comprehensive insight into the effect of NH4+ on activated Fe and C conversion on soil Cd redistribution under gradient moisture conditions.


Ammonium Compounds , Cadmium , Carbon , Fertilizers , Iron , Oxidation-Reduction , Soil Pollutants , Soil , Cadmium/analysis , Soil/chemistry , Soil Pollutants/analysis , Agriculture/methods , Oryza/metabolism
20.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674051

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.


Oryza , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Oryza/metabolism , Oryza/genetics , Oryza/virology , Polysaccharides/metabolism , Glycosylation , Humans , SARS-CoV-2/metabolism , Protein Domains , Protein Binding , Plants, Genetically Modified/metabolism , COVID-19/virology , COVID-19/metabolism
...